例如:静止的两辆小车用细线相连,中间有一个压缩的弹簧。烧断细线后,由于相互作用力的作用,两辆小车分别向左右运动,它们都获得了动量,但动量的矢量和为零。
(3)动量与动能定理的区别
动量定理:p=反映了力对时间的累积效应,是力在时间上的积累。为矢量方程式,既有大小又有方向。
动能定理:反映了力对空间的累积效应,是力在空间上的积累。为标量方程式,只有大小没有方向。
数学表达式
(1)p=p′即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量。
(2)Δp=0即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为:
(等式两边均为矢量和)。
(3)Δp1=-Δp2
即若系统由两个物体组成,则两个物体的动量变化大小相等,方向相反,此处要注意动量变化的矢量性.在两物体相互作用的过程中,也可能两物体的动量都增大,也可能都减小,但其矢量和不变。[1]
数学推导
两球碰撞示意图
两球碰撞示意图
以两球碰撞为例:光滑水平面上有两个质量分别是m1和m2的小球,分别以速度v1和v2(v1>v2)做匀速直线运动。当m1追上m2时,两小球发生碰撞,设碰后二者的速度分别为v1ˊ,v2ˊ。
设水平向右为正方向,它们在发生相互作用(碰撞)前的总动量:p=p1+p2=m1v1+m2v2,在发生相互作用后两球的总动量:pˊ=p1ˊ+p2ˊ=m1v1ˊ+m2v2ˊ。
设碰撞过程中两球相互作用力分别是F1和F2,力的作用时间是。
根据牛顿第二定律,碰撞过程中两球的加速度分别为:
根据牛顿第三定律,大小相等,方向相反,即:F1=-F2
所以:m1a1=-m2a2
碰撞时两球之间力的作用时间很短,用表示,这样加速度与碰撞前后速度的关系就是:
,代入上式,整理后可得:
或写成:
即:
这表明两球碰撞前后系统的总动量是相等的。[2]
实验验证
稳定的重核吸收中子后处于不稳定状态,其中的中子会转变成为质子同时放出一个β粒子,这种现象称为β衰变。在历史上,对β衰变机理的探索导致了中微子的发现。当时,一个难以回答的问题是:β衰变过程中所产生的电子从何而来。人们已确认原子核里面不可能存在电子,因此只能认为β衰变所放出的电子是临时产生的,即一个核内中子放出一个电子并转变为一个质子。但进一步的分析表明,这种想法存在着严重的缺陷,因为它明显地违反了能量守恒定律、角动量守恒定律和动量守恒定律。一般而言,放射性原子核所发射出的粒子都要带走大量的能量,由E=mc2知,这是由于原子核有一小部分质量转换成了能量。换句话说,在发射粒子的过程中,原子核总是会损失一小部分质量。但令人困惑不解的是,通常在β衰变过程中发射出的β粒子(电子)所携带的能量不够大,并不与粒子所损失的质量相适应,而且并不是所有的电子的能量都一样,发射出的电子的能量有一个很宽的范围——即有一个很宽的能谱,其中最大的能量(只有少数电子具有这样大的能量)才等于放射过程中母核与子核的能量差(即蜕变能)。对于β衰变过程中的绝大数电子来说,其能量并不等于这一最大能量。这也就是说,在前面所设想的β衰变过程不能使得反应前后能量守恒。“失踪”了的能量跑到哪儿去了呢?尽管人们曾提出了一些可能的解释方案,但是这些设想又为进一步的实验所否定。因此,人们不得不承认前面设想的β衰变过程不符合实际。
为了解决上述矛盾,验证能量守恒定律,奥地利物理学家泡利(1900—1958)在1930年提出了一个大胆的设想:如果认为在β衰变过程中还伴随着一种未被查觉的未知粒子的话,那么上面所列举的矛盾都可立即获得解决。亦就是说,如果β衰变遵守能量守恒定律的话,那么在衰变过程中应当还有一种质量极小又不带电荷的粒子存在,泡利是在1930年12月给迈特纳和盖革的信中首先提出这个假设的。
泡利的假设提出后不久,1933年费米就在此基础上提出了β衰变理论,并把泡利预言的这样一种不带电的、质量极小的粒子命名为:“中微子”(即中性的小家伙),以区别中子,并用n表示.他认为根据中微子假设,β衰变实际上是中子转变为质子、电子和中微子的过程。后来人们知道,费米所说的中微子其实是“反中微子”。
中微子的假设非常成功,但是要观察它的存在却非常困难,由于它质量既小又不带电荷,与其它粒子间的相互作用非常弱,因而它总是顽固地不愿意表露自己。(据说平均地讲,一个中微子要穿透1000光年厚的固体铁“板”才与其它粒子发生相互作用,因此它可以毫不费力地穿过地球而不发生变化。这一性能已被人们用来研究穿透地球的“中微子通讯”的可能性。)显然,中微子的这种个性使得确认它的存在成了一件极困难的事情。1953年,美国洛斯阿拉莫斯科学实验室的物理学爱莱因斯和柯万领导的物理学小组着手进行这种几乎不可能成功的探测。他们在美国原子能委员会所属的佐治亚洲萨凡纳河的一个大裂变反应堆进行探测。终于到1956年,也就是泡利提出这种粒子假设整整四分之一世纪以后,探测到反中微子,1962年又发现了另一种反中微子,中微子的发现说明,能量守恒定律在微观领域里也是完全适用的。
;